Object Oriented Change Detection of Buildings After a Disaster

Supannee Tanathong Kurt T. Rudahl Sally E. Goldin Department of Computer Engineering King Mongkut's University of Technology Thonburi Bangkok, Thailand

ASPRS Baltimore, USA 8-13 March 2009

What is Unusual about a Disaster?

- 'Incomplete' advance preparation no good data
- Remote locations with weak local infrastructure
- Infrastructure is incapacitated
- People with good local knowledge are technologically untrained
- Trained people are ignorant of local conditions
- Language translations not available

Geoinformatics Laboratory at KMUTT

- Computer Engineering, not Geography
- Creation of geospatial software with focus on:
 - > Developing countries
 - Naive or untrained users
 - Full internationalization (multiple languages)
 - > Ability to use low-quality data

Immediate Tasks

- Rescue survivors
- Food and medical aid
- Disease prevention sanitation and water supplies
- Assess damage
- Rebuild (or relocate)

Satellite Data

- Even with current hi-resolution satellites, humans are too small to see
- Can use building destruction as a proxy to locate distressed communities
- Research reported here attempts to apply the GlaK principles to this task

Study Topic – The Andaman Tsunami 2004

Overall Framework of The System

Note we are not differencing the images then looking for buildings, but the other way around.

- Human-made objects are generally distinct from natural landscape in various geometric ways (such as low fractal dimension).
- We want to use *a-priori* knowledge about buildings to separate them from the surroundings.
- Initially, we assume a four-sided building:

- However, with 1-meter image resolution, a building may occupy only a few pixels
- The two lines forming the shorter side are frequently undetectable

- Instead, we will look for pixel regions where:
 - There are two parallel lines (the long sides) of similar extent
 - The region between the lines is homogeneous (all the same)
 - The region between the lines is compact (distinct from surroundings)

Building extraction outline:

CANNY EDGE DETECTION

Gradient Magnitude

LINE SEGMENT EXTRACTION

Gradient Direction

[1° ... 360°]

LINE SEGMENT EXTRACTION

Edge image

Extracted line segments

LINE SEGMENT EXTRACTION

Find properties of a line segment

PAIR OF PARALLEL LINES DETECTION

Conditions to form a major line pair:

PAIR OF PARALLEL LINES DETECTION

REGION GROWING BETWEEN PARALLEL LINES

Calculate two parameters for the region growing:

(a) Seed point

Centroid of the major line
pair

(b) Threshold

Median filter

 Difference between min and max color of pixels.

BUILDING CANDIDATE EVALUATION

The region can be a building candidate if it has a compact shape.

- (1) Height (H)
- (2) Width (W)
- (3) Centroid (xc,yc)
- (4) Slope of major axis
- (5) Slope of minor axis

- We collect all the objects defined by pairs of parallel lines, and assign a probability based on
 - Plausible dimensions (size and aspect ratio)
 - Uniform internal region
- Various other measures were tried and found not useful
- Clearly, 'plausible' dimensions, and even building shape, depend heavily on the particular locale.

Object Processing

We want to match up pre- and post-event objects:

Object Processing

- Each candidate building in the before- and after-event images is converted into an 'agent'.
- Each agent has knowledge about itself (location, time, etc).
- Each agent has limited abilities to evaluate its relationship to other agents.
- Agents from the before and after images try to find their counterparts.

Object Processing

- For any given agent, three results are possible:
 - A match is found with essentially the same location and properties.
 Conclusion: no or minimal damage
 - A match is found, but with changed location or size
 Conclusion: significant damage occurred
 - No match is found
 Conclusion: extensive damage making the building unrecognizable
- Important to remember that we are not really trying to evaluate individual buildings, but rather to estimate the severity of damage within a community.

Experiments

- Reported experiments involving two building types: industrial buildings (warehouses) and residential.
- Two IKONOS images with 1-meter resolution captured on 24 January 2004 (pre-event) and 29 December 2004 (immediately post-event)
- Phuket Island in the Andaman Sea coastal region of Thailand.
- All of the software was written by Ms. Supannee Tanathong as part of her Master's thesis.

Experiment 1 - Industrial

Pre-event image

Candidate objects

Post-event Image

Candidate objects

Experiment 2 - Residential

Pre-event image

Candidate objects

Post-event Image

Candidate objects

Experiment Results

Industrial Area Changes

Residential Area Changes

Red indicates buildings apparently damaged Green indicates building which disappeared

Experimental Results - Summary

Industrial Area:

• Two buildings were changed after the disaster while the remaining had disappeared or were no longer recognized as buildings. This matched visual interpretation.

Residential Area:

- 23 buildings were changed in the post-disaster image in either area or structure, which matched visual interpretation
- Due to the failed detection of some buildings in the post-disaster image, our change detection falsely reported that 12 buildings had disappeared in the post-disaster image. Thus, destruction was significantly over estimated.

Conclusions

We have presented

- A method for extracting buildings as objects from remote sensing images
 - We employ edge detection and region growing approaches to supplement each other in order to locate building
 - We can detect both large-size buildings in industrial areas and smallsize buildings in residential areas with 75 percent accuracy
- An object-oriented approach to assessing building damage following a disaster
 - An agent-based approach permits us to fine-tune the object detection for different types of objects by having different rule sets and parameters

ACKNOWLEDGMENT

We would like to thank the Thai Geo-Informatics and Space Technology Development Agency (GISTDA) for providing remotely sensed imagery, and the International Water Management Institute for permission to use their remotely sensed images during software testing.

Contacts

Supannee Tanathong - *littlebearproject@yahoo.co.uk* Kurt T. Rudahl - *rudahl@rsgis.net* Sally E. Goldin - *seg@goldin-rudahl.com* Dragon software is at *http:///www.dragon-ips.com* Geoinformatics Laboratory at King Mongkut's University *http://www.cpe.kmutt.ac.th/glak*

